E-newspaper (Second Year) Chase Issue no 038 dated 02-Dec-2015
(MATHEMATICS VALUES CHASE YEAR 01-10-2015 to 30-09-2016)

VEDIC MATHEMATICS

\&
MODERN MATHEMATICS

SATHAPATYA MEASURING ROD

(HYPER CUBES 1 TO 6)
Sixth Week : Day 3
Sathapatya measuring rod

1. Vedas are four: Rigved, Yajurved, Samved and Atharavved.
2. Each Ved has distinct upved.
3. Ayurved is the upved of Rigved.
4. Dhanurved is the upved of Yajurved.
5. Gandharvved is the upved of Samved.
6. Sathapatya ved is the upved of Atharavved.
7. Upved is preserves the applied values of pure knowledge of Ved.
8. Sathapatya ved preserves the applied values of Atharavved.
9. Mansara मानसारा is one of the scripture of Sathapatya ved.
10. 'मान’ Maan means measure. 'सार' Saar means essence.
11. Mansara, as such is the scripture of 'essence of measures'
12. Mansara preserves the enlighten as that Lord Vishnu is the presiding deity of measuring rod.
13. Mansara further preserves that Lord Brahma creator the supreme, the four
head lord is the presiding deity of the measure of the measuring rod.
14. Scripture further preserve that Lord Vishnu is the six head lord and is the presiding deity of real 6 -space of which Sun is the manifested body.
15. Scriptures further preserve that 'Sun' permits association of value of number ' 6 '
16. Sankhiya Nishtha and Yoga Nishtha complement and supplement each other and also therir processing steps run parallel to each other
17. Sankhiya Nishtha presumes the existence of geometric formats and avails artifices of numbers.
18. On the other hand Yoga Nishtha presumes the existence of artifices of numbers and avails dimensional frames of spaces.
19. With it artifices of numbers and dimensional frames acquire parallel formats and processing steps.
20. With it 6 -Space and 6 dimensional frame run parallel to each other like that artifice
of number 5 and dimensional frame of 5Space run parallel to each other
21. Artifice number 4 and dimensional frame of 4-Space run parallel to each other.
22. Artifice number 3 and dimensional frame of 3-Space run parallel to each other
23. Artifice number 2 and dimensional frame of 2-Space run parallel to each other
24. Artifice of number 1 and dimensional frame of 1-Space as well run parallel to each other.
25. Existing Mathematics systems avail and workout space within a three dimensional frame.
26. Vedic Systems avail and workout solar universe as a space framed within the six dimensional frame existing mathematical formats avail interval, square and cube / 1-Space, 2-Space and 3-Space bodies.
27. Vedic Systems avails in interval, square and cube as hyper cubes 1, 2 and 3 respectively.
28. Vedic Systems avails and workout solar universe in terms of measuring rod synthesized set up of hyper cube $1,2,3$, 4, 5 and 6
29. Vedic Systems process out 6-Space as domain accepting 6 dimensional frame with each dimension being 4 -Space as domain.
30.6-Space as domain and 4-Space as dimensional is the feature which deserve to be comprehended well and to be thoroughly appreciated in the context of 3-Space we are acquainted with 3-Space as domain (volume) and 1-Space as dimension (axis)
30. This as such brings us face to face with characteristics feature as that while nspace plays the role of domain (fold), (n 2) space plays the role of dimension (fold)
31. $\mathrm{N}=1$ shall be leading to 1 -space as domain (fold) and (-1) space as dimension (fold)
32. $\mathrm{N}=2$ shall be leading us to 2 -Space as domain and 0 space as dimension.
33. $\mathrm{N}=3$ shall be leading us to 3 -Space as domain and 1-Space as dimension
34. $\mathrm{N}=4$ shall be leading us to 4 -Space as domain and 2-Space as dimension
35. $\mathrm{N}=5$ shall be leading us to 5 -Space as domain and 3-Space as dimension
36. $\mathrm{N}=6$ shall be leading us to 6 -Space as domain and 4 -Space as dimension
37. One another characteristic feature of the Sathapatya measuring rod is that its constituent namely hyper cubes 1 to 6 as manifested bodies of 1 -Space to 6 -Space respectively accept domain boundary ratio as An: $2 \mathrm{n}^{\mathrm{n}-1} ; \mathrm{n}=1,2,3,4,5,6$.
38. One may have a pause here and take note that interval as manifested 1-Space body is hyper cube-1 with its domain (length) A^{1} : and its boundary (pair of end points) 2b0
39. Likewise square as 2-Space body is having domain (area) as A^{2} and its boundary (four boundary lines) being of value 4 b 1 .
40. Further cube as 3-Space body as domain (volume) permitting expression as A^{3} and its boundary as a set up of six surface plate permit expression $6 \mathrm{~B}^{2}$.
41. Further hyper cube- 4 as 4 -Space body permit expression for its domain as A^{4} and for its solid boundary of eight components as $8 \mathrm{~B}^{3}$.
42. Ahead hyper cube-5 as 5 -Space body as domain of expression B^{5} and creative boundary (4-Space as boundary) of ten components permitting expression as $10 \mathrm{~B}^{4}$.
43. Finally hyper cube-6 as well accepts domain boundary ratio as $A^{6}: 12 B^{5}$
44. One another character feature of hyper cube is that the origin folds are of one degree higher than that of the domain folds.

46．Illustratively interval as hyper cube－1is accepting 2－Space as origin fold．
47．Square as hyper cube－2 accept 3－Space as origin fold．
48．Cube as hyper cube－3accepts 4 －Space as origin fold
49．Hyper cube－ 4 has 5 －space in the role of origin fold．
50．Hyper cube－5 has 6－Space in the role of origin fold．
51．Hyper cube－6 has 7－Space in the role of origin fold．
52．One may have a pause here and take note that（ -1 ）space is the role of dimension of hyper cube－ 1 （interval， 0 －space plays the role of boundary， 1 －Space plays the role of domain and 2 －space plays the role of origin of hyper cube－1（interval）．
53．The four folds of hyper cube－2（square） are ：（i） 0 －space as dimension（ii） 1 －Space as boundary，（iii）2－Space as domain and （iv）3－Space as origin
54．Hyper cube－3 has 1－Space as dimension， 2－Space as boundary，3－Space as domain and 4－Space as origin．
55．Hyper cube－4 has 2－Space as dimension， 3－Space as boundary，4－Space as domain and 5－Space as origin．
56．Hyper cube－5 has 3－Space as dimension， 4 －Space as boundary， 5 －Space as domain and 6－Space as origin．
57．Hyper cube－ 6 has 4 －space as dimension， 5－Space as boundary，6－Space as domain and 7－Space as origin．
58．We are well acquainted with symbolic expression for interval（一），square（口） and cube（ $\boldsymbol{\Xi}^{(5)}$
59．Further we may accept symbols for hyper cube－4， 5 and 6 as hyper cube－4（気）， hyper cube－ 5 （ (5) and hyper cube－ $6((\rightarrow *)$ ）．
60．In this background we may have a fresh look at the symbolic expression for Sathapatya measuring rod as under ：

61．We may have a pause here and take note that the above expression is focusing upon the domain boundary ratios of hyper cubes 1 to 6 in a sequential order．
62．One shall have a fresh look at the above sequential expression，step wise by having a pause at the set ups of hyper cubes $1,2,3,4,5$ and 6 ，respectively in that sequence and order．
63．It would be a blissful exercise to be face to face with the features of the set ups of hyper cubes $1,2,3,4,5$ and 6 ．
64．It would be a very blissful exercise to revisit the set up of the cube and to glimpse and imbibe this set up as of hyper cube－3
65．It would be a very blissful exercise to tabulate individual characteristics features of hyper cube $1,2,3,4,5,6$ ．
66．It would be a very blissful exercise to express oneself about once comprehension of Sathapatya measuring rod．

Dr．S．K．Kapoor，Ved Ratan

